Asahi **KASEI**

Material Sector Business Briefing

Performance Polymers SBU

September 8, 2016 Asahi Kasei Corp.

Contents

- 1. Overview of Performance Polymers SBU
- 2. Synthetic rubber business
- 3. Engineering plastics business

Outline of medium-term strategy

1. Expansion of profitable businesses on a global scale

Europe: Strengthening business relations with European automotive manufacturers

North America/Mexico: Expanding compounding business

China: Driving growth through competitive materials

❖ ASEAN: Expanding market share in Japanese automotive sector

2. Expansion focused on S-SBR for high-performance and fuel-efficient tires

3. Expansion focused on engineering plastics for automotive applications

Sales growth plan (FY2013 = 1.0)

Main products

Business	Main products	Main applications	
Synthetic	S-SBR (solution-polymerized styrene- butadiene rubber)	High-performance and fuel-efficient tires	
Rubber	Hydrogenated styrene-butadiene thermoplastic elastomer (SEBS and SBBS)	Medical fluid bags, sanitary products	
Engineering Plastics	Leona polyamide 66 (PA66)	Automotive parts, electrical/electronic parts	
	Tenac polyacetal (POM)	Automotive parts, office equipment	
	Xyron modified polyphenylene ether (mPPE)	Automotive parts, solar panels, office equipment	
	Thermylene reinforced polypropylene (PP) compound	Automotive parts, furniture	

Global bases (production, sales, and R&D sites)

Synthetic rubber business

Synthetic rubber & elastomer products

Contributing to life and living around the world with our broad lineup of products based on butadiene and styrene

Solution-polymerized styrene-butadiene rubber

- There are two types of SBR, E-SBR and S-SBR. Both are used for vehicle tire tread.
- Featuring high design flexibility, S-SBR enables various performance criteria for tires to be met. S-SBR is especially suited to high-performance and fuel-efficient tires.

	S-SBR (solution polymerized)	E-SBR (emulsion polymerized)
Polymer design flexibility	High	Low
Manufacturers	Few	Many
Applications	High-performance and fuel-efficient tires	General-purpose tires

Tire structure

Tread compound technology revolution: from carbon black to silica filler

Tread		
Performance criteria	Polymers used	
 Fuel efficiency Wet grip Wear resistance Handling stability 	SBR (main polymer) Natural rubber (NR) High-cis BR	

Dramatic improvement in fuel efficiency by compounding tread with silica. Achieving all performance criteria is highly dependent on the properties of SBR.

Key technology is SBR structural design

Trends impacting S-SBR demand

NEW

Demand for higher tire performance (both fuel efficiency and wet grip)

Tire labeling regulations

Region	Evaluation criteria	Launch
Japan	Rolling resistance Wet grip	January 2010 (voluntary)
Korea	Rolling resistance Wet grip	Voluntary from November 2011, mandatory from December 2012
EU	Rolling resistance Wet grip Noise	Mandatory from November 2012, sale of F and G rated tires prohibited from November 2016, stricter rolling resistance standard applied from 2018
China	 Rolling resistance Wet grip Noise 	Voluntary from September 2016, mandatory from 2019 (planned)
Brazil	 Rolling resistance Wet grip Noise 	Under study
USA	Rolling resistance Wet grip Wear resistance	Under study

Needs for lighter vehicles

Improving fuel efficiency of conventional fuel cars

Extending driving range of hybrid/electric cars

 \downarrow

Lighter weight tire

 \downarrow

Thinner and longer-life tread

 \downarrow

Needs for better wear resistance

Global sales forecast of tires for passenger cars and light trucks

Growth of S-SBR market for tire

Global demand forecast for SBR for tires (excluding in-house production by tire manufacturers)

- S-SBR demand growth exceeding that of E-SBR
- Asahi Kasei's global S-SBR sales growth far above overall market growth

S-SBR business growth strategy

1. Technological development

Continuous R&D to <u>further heighten our original technology to</u> <u>create products that meet customers' needs and support their development of higher-performance tires</u>

2. Proactive supply capacity expansion

<u>Proactive expansion of our production capacity to ensure a stable supply to our customers</u> as demand continues to grow

Technology for fuel-efficient tires

Cause of energy loss	Approach to reducing energy loss	Polymer design features
Filler-to-filler interaction	Finer dispersion of filler	- Higher molecular weight (higher shear force)- Functionalization (functional group introduced)
(friction between filler particles)	Reduced filler content	- Higher molecular weight (loss of strength suppressed)- Branched structure (processability improved)
Motion of polymer chain ends	Reduced number of free polymer chain ends	- Higher molecular weight - Narrow molecular-weight distribution
(energy lost as heat)	Fix free polymer chain ends	- Functionalization (functional group introduced)
Filler-to-polymer interaction (friction between filler and polymer)	Chemical bond between filler and polymer	- Functionalization (functional group introduced)

Effect of functional groups

Technical advantages of Asahi Kasei's S-SBR

- S-SBR production technologies are continuous process and batch process. Asahi Kasei focuses on continuous process, which is employed by fewer manufacturers.
- Our continuous-process S-SBR, with high molecular weight, contributes to enhanced wet grip, wear resistance, and handling stability. Together with functionalization technology and polymer design technology, we offer high-value specialty products that contribute to overall tire performance.

Proactive expansion of supply capacity

- Proactively expanding capacity to meet rapid market growth
- Studying expansion of existing facilities and construction of new facilities overseas

Further expansion

Singapore Line 2

World's No. 1
S-SBR supplier

Unit: tons / year

Singapore Line 1

	Japan	Overseas	Total
2012	140,000* Kawasaki and Oita		
2013		+50,000 Singapore Line 1	190,000
2015		+50,000 Singapore Line 2	240,000
by 2020		Expansion New line or facility	

^{*} Flexible capacity including BR

Engineering plastics business

About our engineering plastics business

What is compounding?

- A process in which a polymer material is given various additional performance properties.
- A polymer is melted and mixed in an extruder with other polymer, glass fiber, flame retardant, and other additives to produce a compound.

Engineering plastics business growth strategy

Basic principle

Expanding business by leveraging our <u>superior grade lineup</u> and <u>application</u> <u>development technology</u> with our global compounding infrastructure

Strategic focus on automotive applications

- **Demand for engineering plastics** expanding with needs for greater fuel efficiency (vehicle weight reduction) prompting greater **substitution of metal**
- Establishment of Asahi Kasei Europe GmbH for further expansion of business in Europe
- •Meeting customers' needs through our capability of **developing superior grades** by polymerization, alloy, and compound technologies, and capability of **developing new applications**
- Employing CAE (computer-aided engineering) for product proposals in the design of automotive parts
- •Utilizing our **global network** to swiftly met customers' needs

Main products	Main applications
Leona polyamide 66 (PA66)	Automotive parts, electrical/electronic parts
Tenac polyacetal (POM)	Automotive parts, office equipment
Xyron modified polyphenylene ether (mPPE)	Automotive parts, solar panels, office equipment
Thermylene reinforced polypropylene (PP) compound	Automotive parts, furniture

Engineering plastics sales growth plan

Strengths by material (1)

Our engineering plastics improve performance, quality, and reliability of automotive parts

- Leona: Maintains good heat resistance and strength even in harsh conditions of engine compartment
- Tenac: Contributes to comfortable and pleasant car interiors with low VOC emission

Leona polyamide (PA) 66

- Broad lineup of grades with good balance of heat resistance, strength, and rigidity
- Rich track record in substitution of metal

Door mirror bracket

Know-how for applications development and substitution of metal

Grades with heat resistance, strength, and rigidity

Polymer technology
PA66 PA610 PA612 66/I

Tenac polyacetal (POM)

- Superior grades with low VOC (volatile organic compound) emission
- Formaldehyde emission reduced by 90%

Strengths by material (2)

Our engineering plastics improve performance, quality, and reliability of automotive parts

- Xyron: Good balance of heat resistance, chemical resistance, and dimensional stability
- Thermylene: Light weight, easy to mold, good strength and durability

Xyron modified polyphenylene ether (mPPE)

- Improved heat resistance, chemical resistance, and dimensional stability by alloying with PA and PP in addition to polystyrene (PS)
- Differentiation with original alloy technology

Thermylene polypropylene (PP) compound

- Improved strength added by compounding with glass fiber (GF) and minerals, while leveraging PP's low cost and easy moldability
- Growing as a substitute of high performance plastics

Truck fender PA/PPE

Lithium-ion battery holder PPE/PS

Fan shroud
PA + GF → PP + GF

Interior console
PP + long GF → PP + short GF

Car battery case PP/PPE

Relay block PA/PPE

Door module
PP + long GF → PP + short GF

Mirror bracket $PA + GF \rightarrow PP + GF$

Strengths in computer-aided engineering (CAE)

Meet customers' requirements with our engineering plastics

Roadmap for expanding business bases

Expanding our global network of bases for swift response to customers' needs

■ Complete □ Under study

	2013–2015	2016–2018	2019–
US/ Mexico	Asahi Kasei Plastics Mexico S.A. de C.V. (sales office, Sep. 2015)	New plant in Athens (second compounding plant in US, Feb. 2016)	☐ Local compounding in Mexico
Europe		Asahi Kasei Europe GmbH (European headquarters, Apr. 2016)	☐ Local compounding in Europe
		☐ Technical center in Europe	
China	Shanghai technical center (2013)	☐ Technical center in Guangzhou	☐ Expand sales offices in China
	Sales offices in Wuhan and Ningbo (2013)		Increase compounding capacity in Suzhou
ASEAN/		Asahi Kasei Plastics Vietnam Co., Ltd. (CAE center, Jun. 2016)	Increase compounding capacity in Thailand
India		☐ Technical center in Thailand	
		☐ Local compounding in India	

Sales office in Mexico

Name: Asahi Kasei Plastics Mexico S.A. de C.V.

Address: Querétaro, Mexico

Established: June 2015

President: lichiro Kitsuda

Ownership: 100% owned by Asahi Kasei Corp. through North American subsidiaries

Operation: Sales and technical support of performance plastic compounds, mainly

polyamide and polypropylene

Start-up: September 2015

AsahiKASEI

Second compounding plant in the US

Company: Asahi Kasei Plastics North America, Inc.

Location: Athens, Alabama

Capacity: 30,000 tons/year

Products: Performance plastic compounds,

mainly polyamide and polypropylene

Start-up: February 2016

About Asahi Kasei Plastic North America (APNA)

Headquarters: Fowlerville, Michigan

Establishment: July 2000

President: John Moyer

Operation: Manufacture and sale of performance

plastic compounds, mainly polyamide and

polypropylene

Capacity: 105,000 tons/year (Fowlerville, MI)

30,000 tons/year (Athens, AL)